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ABSTRACT

When codeword frequency meets geographical location in
landmark search applications, is it still discriminative for
the search procedure? In this paper, we give a systematic
investigation about how geographical location affects the
effectiveness of codeword frequency. We explain why the
standard IDF in the BoW models is less effective in loca-
tion related search applications [11][12]. Consequently, we
propose a “location discriminative codeword frequency ”
strategy to introduce the location context into the codeword
discriminability measurement. This new codeword frequency
is calculated in each geographical region, for which a spectral
clustering scheme is proposed to partition the geographical
map of each city into distinct regions. Extensive compar-
isons over the standard codeword frequency in state-of-the-art
landmark search systems [1][1] demonstrates our approach’s
effectiveness.

Index Terms— landmark search, mobile search, visual
vocabulary, codeword frequency, geographical clustering

1. INTRODUCTION

Coming with the popularization of mobile devices, the suc-
cess in patch-based image retrieval [1][6] facilitates many
landmark search applications [11][12]. Generally speaking,
given a landmark database, where each photo is bound with
a GPS location, we have the typical scenario: In the server-
end computer(s), images are offline inverted indexed using
patch quantization schemes such as Vocabulary Tree [1] and
its variances [7][11][12]. In the user-end client, a landmark
query is captured using camera-embedded PDA or mobile
phone. A photo or its visual descriptors [2][3][5][4] is trans-
mitted to the server, where its Bag-of-Words (BoW) feature
is built to search near-duplicated landmark photos.

This paper focuses on the effectiveness of codeword
frequency in the context of landmark search. Codeword fre-
quency is a universal setting in most existing landmark search
systems [11][12][13][10]. Given a BoW histogram extracted
(or transmitted) from the user query, codeword frequency
such as Term Frequency (TF) [14], Inverted Document Fre-
quency (IDF) [14], and Mutual Information (MI) [10], aims
to distinguish the contributions of different codewords in

Fig. 1. A toy example of why codeword frequency is subop-
timal in landmark search.

the subsequent similarity ranking. This is usually achieved
by applying an importance weighting to the original BoW
histogram distance (L2 or Cosine).

While the standard codeword frequency aims to measure
the visual discriminability of a given codeword, the frequency
used in landmark search should emphasize more on the land-
mark queries. In such context, the contribution of a given
codeword not only relies on the visual discriminability of its
quantized local patches, but also depends on how it can dis-
tinguish different geographical landmarks in the subsequent
ranking. Figure 1 shows a toy example: To find the “Green”
landmark, the “red” codeword is much more discriminative
than the “blue” codeword, even both codewords have an iden-
tical frequency. As the “red” codeword concentrates more on
the “Green” landmark, “red” codeword is a more discrimina-
tive feature for the image ranking. On the contrary, the “blue”
codeword is uniformly distributed over all landmarks, making
it less discriminative, even if it has higher frequency. Figure 1
indicates the existing codeword frequency is not specified for
the landmark search or other location sensitive applications,
as it fails to incorporate the geographical locations into the
codeword discriminability estimation.

In this paper, we give a systematic evaluation on how
location cues influence the codeword frequency effectiveness.
We show that the existing codeword frequency outputs sub-
optimal performances in the context of landmark search. It in
turn explains why previous works cannot achieve satisfactory
results by adding codeword frequency into the BoW distance
[11][12]. Towards optimal codeword frequency calculation,
we propose a Location Discriminative Codeword Frequency
(LDCF), which outperforms the standard frequency with a
large margin. To enable location discriminative frequency



measurement, we further introduce a spectral clustering
scheme to partition the geographical map into discrete re-
gions. In online search, once a mobile user enters a given
geographical region, the remote server identifies its current
location (based on his GPS or based station signals), subse-
quently makes use of the corresponding LDCF in this region
for an optimal landmark search.

2. SUBOPTIMAL CODEWORD FREQUENCY IN
LANDMARK SEARCH

Towards efficient landmark search in a million scale database,
the Scalable Vocabulary Tree (SVT) [1] is well exploited
in previous works [2][3][10][11]. SVT uses hierarchical
k-means to partition local descriptors into quantized code-
words. A H-depth SVT with B-branch produces M = BH

codewords, and the scalable search typically settles H = 6
and B = 10 [1]. Given a query photo Iq with local descriptors
Sq = [S q
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vocabulary hierarchy to find the nearest codeword, which
converts Sq to a BoW signature Vq = [Vq
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search, the ranking aims to minimize the following ranking
lost with respect to the ranking position R(x) of each photo Ix

in a n-photo database:

LostRank =

N∑
x=1

R(x)Wx||Vq,Vx||Cosine (1)

where TF-IDF weighting is calculated similar to its original
form [14] in the document retrieval as:
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nx denotes the number of local descriptors in Ix; nx
Vi

denotes
the number of local descriptors in Ix quantized into Vi; N de-
notes the total number of images in the database; NVi denotes
the number of images containing Vi;

nx
i

nx serves as the term
frequency of Vi in Ix; and log( N

NVi
) serves as the inverted doc-

ument frequency of Vi in the database.
One important issue lies in: IDF in Equation 2 should

operate at the landmark level: If we can identify which photo
belongs to which landmark, we should calculate codeword
frequency for each Vi as:

IDFLandmark = log(
N

N′Vi

) (3)

where N′Vi
refers how many landmarks (not photos) contain-

ing the codeword Vi; However, tagging every photo for the
entire database is extremely difficult if not impossible in a
large-scale database.

3. LOCATION DISCRIMINATIVE FREQUENCY

We propose a refined“Location Discriminative Codeword
Frequency” (LDCF), which largely improves the landmark
ranking precision in online search. We’d like to replace the
IDF weighting in WT F−IDF to truly distinguish contributions
of codewords in locating landmarks: A codeword that is
geo-scatted over the entire region is less discriminative, com-
paring with a codeword that is geo-concentrated in a given
landmark location, even with an identical IDF. Our LDCF
incorporates such geographical distribution concentration
measurement to re-estimate the codeword discriminability.

For a given codeword Vi, we incorporate the geo-distances
among images containing Vi to re-estimate its discriminabil-
ity. The original IDF for Vi is calculated by:

IDF i
Original =

NRegion

Ni
(4)

NRegion denotes the number of photos in the current region R;
and Ni denotes the number of photos in the current region and
contain Vi. Our LDCF i refines Equation 4 by:

LDCF i =

∑
Im∈R
∑

In∈R DisGeo(Im, In)∑
Im∈R, Vi∈Im

∑
In∈R, Vi∈In

DisGeo(Im, In)
(5)

where DisGeo(Im, In) denotes their geographical distance,
measured by L2 distance of their corresponding geographical
location; Im ∈ R denotes image Im falling into the current
geographical region; Vi ∈ Im denotes image Im containing Vi.

Therefore, a codeword that is distributed in a more con-
centrated geographical location is more likely to produce a
higher LDCF, and vice versa.

4. GEOGRAPHICAL CITY PARTITION

LDCF calculation is location-sensitive, so we should estimate
LDCF within each geographical region respectively. There-
fore, we partition the geo-tagged image database into discrete
regions in each city. Note that we should avoid the incorrect
division of an identical landmark into different regions to im-
prove the effectiveness of LDCF: We assume that photos con-
taining an identical landmark are geographically nearby and
visually similar. Therefore, a Visual Aware Spectral Cluster-
ing is proposed to partition each city into visually coherent
geographical regions.

Suppose there are in total N photos in a given city, we
first construct a N-node fully connected graph G. Each node
gi represents a photo, and each link li j denotes the (visual +
geographical) distance between gi and g j. Then, our goal is to
partition G into L subgraphs {G′l } where l ∈ [1, L]. As graph
partition retains NP hard, we resort to a spectral clustering
to handle partition, which is proven to be equivalent to the
normalized graph cut in [15].

We first build a geographical similarity matrix A, where
Ai, j measures the geographical distance between gi and g j. To



Algorithm 1: Visual Aware Spectral Clustering to Par-
tition Geographical Regions

1 Input: Geographical Distance Matrix AN×N .
2 Output: Spectrum Clustering Graph SN×L.
3 ε-Ball Operation on AN×N using Equation 6;
4 Build Laplasians Graph L = I − D−1/2AD−1/2;
5 Spectral Graph Construction by S VD over L into

SN×L, with eigenvectors [e1, e2, ..., eL];
6 Clustering N rows in SN×L into L clusters with

S im(Si,S j) =WLDCF ||BoWi, BoW j||Cosine||Si,S j||2;
7 Return Spectrum Clustering Graph SN×L;

Fig. 2. The visual aware spectral clustering partitions Beijing
into geographical regions.

ensure only nearby photos are grouped into the identical re-
gion, we use a ε-ball to disconnect far-away photos in AN×N :

AN×N =

Ai, j, Ai, j < ε;
∞, Ai, j ≥ ε.

(6)

Then, we build a diagonal matrix D whose (i, i)-element is
the sum of A’s ith row (dk =

∑N
n=1 Ak,n), based on which a

Laplasians matrix L is built via L = I − D−1/2AD−1/2. Sub-
sequently, we extract the L largest eigenvectors [e1, e2, ..., eL]
from LN×N . They transform LN×N into a spectral matrix SN×L,
in which each row Si is a L-dimensional eigenvector in RL

(normalized with a unit length).
We then incorporate the visual similarity into the cluster-

ing of each row Si and S j in SN×L (L-dimensional):

S im(Si, S j) =WLDCF ||BoWi, BoW j||Cosine||Si,S j||Cosine (7)

Algorithm 1 shows the overall clustering process, and exem-
plar partitions in Beijing are given in Figure 2.

5. IMPLEMENTATIONS AND RESULTS

Data Collection: We collected over 10 million geo-tagged
photos from photo sharing websites of Flickr and Panoramio.

Fig. 3. The geographical distribution of community con-
tributed photos with geographical tagging in Beijing.

Our dataset covers typical areas including Beijing, New York
City, Lhasa, Singapore, and Florence. Figure 3 shows the
typical photo distribution in the geographical map of Beijing.
Typically speaking, such data can naturally outline the human
photographing activity (such as user traveling manners on the
roads) from their photographing viewpoint.

Labeling Query Ground Truth: From the geographical
map of each city, we selected the top 30 most dense regions
and 30 random regions. Since manual identifying all related
photos of an identical landmark is intensive, for each of these
60 regions, our volunteers manually identify one or more
dominant landmark views. All near-duplicated landmark
photos are labeled in its current and nearby regions. Then, we
sample 5 images from each region to form the ground truth.
It generates 300 queries with ground truthes in each city.

Parameter and Evaluation: For the landmark photo col-
lection in Beijing, we extract both SIFT [9] and CHoG [8]
features from each photo. Then, we build a Scalable Vocabu-
lary Tree [1] to generate the initial Vocabulary V, which gen-
erates a bag-of-words signature Vi for each database photo Ii.
We use the vocabulary generated in Beijing to search all five
cities, for each of which the boosting is carried out to build the
M transformation. We denote the hierarchical level as H and
the branching factor as B. In a typical settlement, we have
H = 6 and B = 10, producing approximate 100,000 code-
words. We use Mean Average Precision at N (MAP@N) to
evaluate our system performance, which reveals its position-
sensitive ranking precision in the top N positions.

Spectral Clustering Tuning: Our geographical partition
involves two factors: (1) the visual discriminability embed-
ding; (2) the number of eigenvectors in our clustering. Fig-
ure 4 shows that, with visual embedding, we achieve bet-
ter search performance by maintaining identical amount of
highest IDF and LDCF codewords. The influence of differ-
ent eigenvector selections in Beijing is also shown. In each
city, we leverage the similar scheme of Figure 4 to determine
the best region partition number. Smaller regions typically
give higher retrieval performance, but meanwhile, there is a



Fig. 4. The influence of both visual discriminability embed-
ding and (different eigenvector volumes (region numbers)) in
Visual Aware Spectral Clustering, measured by MAP perfor-
mance using our ground truth query set.

higher probability of incorrect matching by falsely mapping
marginal photos into the nearby regions.

LDCF vs. IDF: Figure 5 investigates whether our LDCF
is more discriminative than the standard IDF in finding im-
portant codewords to facilitate landmark search in each ge-
ographical region. In Figure 5, we maintain the top 0.1-0.9
codewords with either highest IDF or LDCF. Then we mea-
sure the MAP degeneration using only these codewords.

From Figure 5, it is obvious that our LDCF did better job
in finding the discriminative codewords. The explanation lies
in that the standard IDF ignores the geographical distributions
of the visual words. That is, a frequent codeword with di-
verse geographical distributions is less discriminative. On the
contrary, a codeword with identical or even less (original) fre-
quency is more discriminative, once it is concentrated within a
certain landmark location (In other words, it can identify this
landmark; meanwhile it does not disturb the rankings of other
landmarks). In fact, this is a commonsense for many pop-
ular landmarks, where geographically nearby photos tend to
present near-duplicated visual appearances. Hence, the LDCF
codewords are more discriminative in landmark search.

6. CONCLUSIONS

We have investigated how the geographical locations influ-
ence the visual codeword frequency in the context of land-
mark search. An important finding is that the standard code-
word frequency can be further optimized by incorporating
the pervasive geographical tags of database photos. We have
introduced a Location Discriminative Codeword Frequency
(LDCF) scheme for codeword discriminability measure-
ment. Extensive experiments have shown LDCF’s superior
performance over the standard IDF setting . The proposed
LDCF scheme can be easily implemented and plugged into
most of the state-of-the-art location sensitive visual search
systems that employ the standard IDF, such as works in
[2][3][8][11][12].

Fig. 5. The retrieval MAP lost by simply maintaining code-
words with the top k% IDF or top k% LDCF values.
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